Daily Potential Evapotranspiration

Notation:

\(PET, PE, E_o, ET_o \)
\(T = \) temperature
\(\rho_v = \) vapor density
\(\rho^0_v = \) saturation vapor density
\(e = \) vapor pressure \(= 4.26 \times 10^{-6} \rho_v T \)
\(\{ T \text{ in } ^{\circ}\text{K} \} \)

I. Mass Balance

\[PET = \left(\frac{\rho^0_v - \rho_{va}}{r_v} \right) \frac{1}{\rho_w} \]
\(\rho^0_v = \) saturated vapor density @ surface
\(\rho_{va} = \) vapor density of air
\(\rho_w = \) density of water
\(r_v = \) resistance to vapor transfer, very sensitive to windspeed
\(u = \) average windspeed
\(k = \) von Karman Constant
\(z_o = \) surface roughness (grass: \(z_o = 0.5 \) ish) \(\sim 0.13h \)
\(d = \) zero plane displacement \(\sim 0.77h \)
\(h = \) vegetation height

II. Energy Equations (Note energy is expressed in kJ)

Basic concept:

\[PET = \frac{Q_e}{\lambda_v \rho_w} \]
\(Q_e = \) evaporative (latent) heat flux
\(\lambda_v = \) latent heat of vaporization

Energy balance gives an estimate of \(Q_e \):
\[Q_e = Q_m - Q_h \]
\[Q_m = \text{net radiation energy flux} \quad \text{[kJ m}^{-2} \text{ d}^{-1}] \]
\[Q_h = \text{Sensible heat flux} \quad \text{[kJ m}^{-2} \text{ d}^{-1}] \]
\[Q_{\text{rn}} = \text{net radiation energy flux} \quad \text{[kJ m}^{-2} \text{ d}^{-1}] \]
\[Q_{\text{rn}} = \text{net solar radiation + atmospheric long wave radiation} - \text{terrestrial long wave} \]
\[T_s = \text{temperature of the surface} \quad \text{[°C]} \]
\[T_a = \text{air temperature} \quad \text{[°C]} \]
\[r_h = \text{resistance to heat transfer} \approx r_v \quad \text{[d/m]} \]
\[C = \text{heat capacity of air} \quad \text{[1.2 kJ m}^{-3} \text{ °C}^{-1}] \]

Penman (1948, *Proc. Royal Soc. A194:220*) **Equation** simplifies the energy balance by removing all “surface” terms:

\[
Q_e = \frac{C \left(\rho^o_{va} - \rho_{va} \right)}{\gamma + \Delta} + \Delta Q_m \quad \text{[kJ m}^{-2} \text{ d}^{-1}]
\]

\[
Q_e = \frac{f(u)(\rho^o_{va} - \rho_{va}) + \Delta Q_m}{\gamma + \Delta} \quad \text{[kJ m}^{-2} \text{ d}^{-1}]
\]

\[\rho^o_{va} = \text{saturation vapor density at air temperature} \quad \text{[kg m}^{-3}] \]
\[\gamma = \text{psychrometric constant} \quad \text{[4.95x10}^{-4} \text{ kg m}^{-3} \text{ °C}^{-1}] \]
\[\gamma = \frac{C}{\lambda_v} \]
\[\Delta = \text{slope of the saturation curve on the psychrometric chart} \quad \text{[kg m}^{-3} \text{ °C}^{-1}] \]
\[\Delta \approx 3.221x10^{-4} \exp(0.8876T^{0.08}) \quad \text{for } 0<T<25^\circ \text{C} \]
\[\Delta \approx 3.405x10^{-4} \exp(0.0642T) \quad \text{for } T>0^\circ \text{C} \]
\[f(u) = \text{an empirical wind function that replaces} \frac{\lambda_v}{r_v} \quad \text{[kJ m kg}^{-1} \text{ d}^{-1}] \]
\[f(u) \approx 4.8x10^3(1+u); u \text{ is the daily average windspeed [m/s] and measured at 2 m.} \]

Note: Dingman's (2002, *Physical Hydrology, 2nd ed*) version of this equation (7-33) is for PET obtained by dividing equation (7a) by \(\lambda_v \rho_w \) (i.e., as in equation (3)) and using conductivity instead of resistance and vapor pressure instead of vapor density. The other apparent differences are mostly notational.

Penman Approximation:
\[\rho_{vs} - \rho_{va} = \rho^o_{vs} - \rho_{va} + \Delta(T_s - T_a) \]
Priestly-Taylor (1972, *Mon. Weather Rev.* 100:81-92) equation simplifies the Penman equation by assuming the at the vapor deficit term and net radiation term are proportional.

\[
\alpha' = \frac{C r_v (\rho_v^a - \rho_v)}{\Delta Q_{rn}} \quad [\text{kJ m}^{-2} \text{d}^{-1}]
\]

The resulting Priestly-Taylor equation uses a constant \(\alpha = 1 + \alpha' \).

\[
Q_e = \alpha \frac{\Delta Q_{rn}}{\gamma + \Delta} \quad [\text{kJ m}^{-2} \text{d}^{-1}]
\]

The common assumption is \(\alpha = 1.26 \).